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In  this part we first extend the theory of part 1 t o  analyse the distribution of 
velocity and electric current in an electrically conducting liquid between two 
circular electrodes of finite diameter, when a current is passed between them. 
The electrodes are set opposite to each other in insulating planes and a magnetic 
field is applied perpendicular to these planes. When the Hartmann number 
M a 1 we find that the current is confined to the cylinder of fluid joining the 
electrodes. This effect is accounted for by the velocity which is induced in thin 
layers of thickness O(M-)), at the circumference of the cylinder. In  our analysis 
we concentrate on these interesting layers and, amongst other results, we find 
that in the limit M -+a the resistance of the fluid between the electrodes be- 
comes that of the cylinder of fluid joining the electrodes. 

We then describe some experiments to test the validity of this theory. In these 
experiments we measured, as a function of the magnetic field, (a) the potential 
difference between the copper electrodes, the fluid being mercury, (b)  the electric 
potential distribution in the fluid between the disks and in the thin layers be- 
tween the electrode edges, by means of an electric potential probe, and ( c )  the 
velocities induced in the layers using a Pitot tube. Our conclusions were: (i) the 
overall predictions of the theory were correct ; (ii) the results of the two probes 
approximately correlated with each other, despite the theory still having some 
limitations and the behaviour of these probes still being somewhat uncertain. 

1. Introduction 
Part 1 of this paper (Hunt & Williams 1968) was an analysis of the flows 

induced in an electrically conducting fluid by passing current between electrodes 
placed in non-conducting planes surrounding the fluid, a magnetic field being 
applied perpendicular to the planes. The analysis was largely concentrated on the 
interesting physical phenomena which occur when the Hartmann number 
M = Boa(cr/y)9 3 1. (B, is the applied magnetic flux density, u is a typical length, 
CT is the fluid’s conductivity and y is its viscosity.) The solutions to the problems 
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analysed in part 1 demonstrated some of the basic physical effects very clearly 
and were simple mathematically. However, to contrive those situations experi- 
mentally proves very difficult, particularly those involving point or line electrodes. 

In  part 2 we examine the effects of passing an electric current between circular 
electrodes of finite diameter under the action of a magnetic field, B,. The geometry 
of the situation is depicted in figure 1 a ;  in this figure is also sketched the pattern 
of electric current streamlines when I B,I = 0,  the characteristic feature being the 
spreading of these streamlines. When a magnetic field is applied in the z-direc- 
tion, i.e. parallel to the direction of current, the j x B force has, for z > 0,  a 
positive component, ( - j ,  B,), in the 8 or azimuthal direction. A velocity vg results, 
which in turn leads to a reduction in Ij,l because of the induced electric field, 
v x B, being opposed to the original applied electric field. Ultimately a steady 
flow is created in which the viscous forces, O(qwg/S2), are balanced by the j x B 
forces, - j rBn = O(Sj,Bo/a), where S is the thickness of the layers emanating 
from the edges. From the curl of Ohm’s law, since 6 < a, vg = O(j,a/aSB,), where 
j, is the value ofj, near Y = 0. Then it follows that 6 = O(aM-*) and a layer must 
exist joining the edges of the electrodes through which the electric potential, #, 
falls and a velocity is induced as shown in figure 1 b. This effect was first fully 
appreciated by Moffatt (1964). 

In $2 we analyse such a situation, assuming (a)  that the electrodes are highly 
conducting relative to the fluid, (b)  that M 3 1, (c) that the fluid is uniform and 
incompressible, and ( d )  that the radius of the electrodes b is very much greater 
than 6, the thickness of the layers between the electrode edges, i.e. b 3 aM-g. 
From this approximate analysis we obtain some quantitative results and 
provide a theoretical basis for explaining the results of the experiments. In a 
forthcoming paper Hunt & Stewartson (1968) deduce a more rigorous asymptotic 
solution to this problem. 

We then describe experiments in which we investigated the effects of a mag- 
netic field on (a )  the potential difference between the electrodes (copper), (b)  the 
potential distribution in the fluid (mercury) between the disks and in the layers 
between the electrode edges, by means of an electric potential probe, and (c) the 
velocities induced in the layers, using a Pitot tube. These experiments were un- 
like most MHD experiments in that measurements were made in the fluid, as 
well as a t  its confining walls. Furthermore, although velocities have recently 
been measured in MHD flows with Pitot tubes, e.g. Branover & Lielausis (1962) 
and Moreau (1966), there have been no previous attempts to use Pitot tubes with 
electric potential probes, to correlate their results, and to compare these results 
with theory. These experiments are also interesting in that the probe measure- 
ments provide a rough check on the theory of MHD probes developed by Hunt 
(1967). 

In  $ 3 the experimental apparatus is described briefly, a more detailed descrip- 
tion of the probes and the mechanism for moving the probe being given in 
appendix A. An outline of the measurement theory of MHD probes is also given 
there. In  $ 4  the results of the measurements and their interpretation are given 
and in $5 the main conclusions from the theory and the experiments are 
presented. 
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FIGURE 1. Electrically driven flow between circular electrodes. (a)  Current streamlines 
when M = 0. ( b )  Current streamlines and velocity profiles when M $ 1. 

2. Asymptotic analysis of the flow between aligned circular electrodes 

In this section we analyse the flow induced by passing a current between two 
electrically conducting disks (the electrodes) placed opposite each other in non- 
conducting planes, their surfaces being flush with these planes. A uniform mag- 
netic field of flux density B, is applied perpendicular to the planes. (See figure 2.) 
In  our analysis we assume: (i) an incompressible, laminar flow with uniform fluid 
properties; (ii) a flow in which radial and axial velocities may be ignored (in 
appendix B we show by theoretical arguments and experimental results that this 
condition requires IB,( to be sufficiently great and the azimuthal velocity, ve, 
sufficiently small); (iii) the boundary conditions and the flow to be axially 
symmetric; (iv) that I B,I is great enough to  satisfy the conditions that (a)  Ma > 1, 

when M % 1 
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and (b )  M319 1, where 1 = b/a is the ratio of the diameter of the electrodes to the 
distance between them; (v) the electrodes are perfectly conducting. 

The first three of these assumptions were made in part 1 of this paper, where 

FIGURE 2. Circular electrodes with various regions for asymptotic analysis. 

we showed that the relevant equations of MHD in cylindrical co-ordinates may 
be written in the non-dimensional form 

(2.1) 

(3.2) 

and 

M = R,a(cr/q)*; I is the total current entering and leaving the electrodes and a 
is the half distance between them. If we express the electric potential q5 as the 
non-dimensional parameter @, then @ = $/(1/2za(r) and 

aO/ap = ah/a<+ MU, ( 2 . 3 a )  

( 3 . 3 b )  

1, 

aO/ac = - (ah/ap -t h / p ) .  

We take the potential of the two electrodes as ( -A$)/? and A$/2 a.t 5 = 

respectively. 
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As in part 1 we shall be using the composite variable (v  + h)  for which the 
governing equation is 

Boundary conditions. On the electrodes and the non-conducting walls at  
6 = k 1, the first boundary condition is, of course, 

v = 0. ( 2 . 5 )  

The boundary condition on h a t  the non-conducting walls (p  > 1) is such that 
j ,  = 0, whence 

for p > I, h = l /p at 5 = 2 1. 

On the surface of the perfectly conducting electrodes a t  5 = k 1, 

( 2 . 6 )  

for p 1, a q a p  = ahlag = 0. (2.7) 

If h = f ( p )  on the electrodes we can calculate the value of f ( p )  when p = 1: 

If we assumef(0) = 0, then 

f ( 1 )  = h(1, 5= & 1) = ljZ. (2.8) 

As in part 1, when M 9 1 we divide the space between the boundaries into differ- 
ent regions, as labelled in figure 2 ,  and then analyse these regions in turn. 

Region 4. I n  this region, lying between the electrodes, a/@ N 1-1 and 8/ac  'v 1, 
whence as M-tco  (2.4) becomes 

M--(v+h)  a = 0. 

85 
(2.9) 

Then since v is antisymmetric 

v = ahlac = a q a p  = 0. 

Thence it follows, since the potential is constant on the electrodes, that in 
region (4) 

where h is a constant; as it turns out h is a function of M .  
Region 5. I n  this region, which extends outwards from the edge of the elec- 

trodes, the solutions for v and h which satisfy (2.1) and ( 2 . 2 )  and the boundary 
conditions at 6 = i 1, namely (2.5) and (2.6), are: 

h = hp/P and @ = - 2hc/12, (2.10) 

v = 0, A = l/p. (2.11) 

Matching regions. Now, although the values of h and v for regions (4) and (5) are 
continuous at  p = I, their derivatives with respect to p are not. Therefore the 
higher derivatives with respect to p which were ignored in calculating (v + h )  in 
region (4) become singular and a matching layer must exist. We expect this layer 
to be of the same form as that analysed in part 1. Therefore we can assume that 
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the thickness of this layer is O(M-*) and that, since in this case the current 
density on the electrode is not specified in regions (2a)) and (2 b ) ,  

(2.12) 

wherep = (p - 1) M* and g ( p )  satisfies the condition 

g ( p )  = 0 for p > 0. (2.13a) 

In order that regions (1) and (4) should match, g ( p )  also satisfies the condition 

g(p )+2p+h:  as p+-co,  (2.13 b )  

on making the assumption that 

h = 1 + K/lM*. (2.14) 

Using the same notation and the same approximations as in part 1 for the 
regions (l), (2) and (3), we find that in region (2a ) ,  where 1 - 5 N O(M-l ) ,  

(v + h)(2a) = f(pL 

and in region (l), where p N O( 1)  and 5 N O( l),  

W 1 1 

p 212M*[;rr( 1 - c ) ] * J o  
(V+h)( , ,  = -+ g ( t )  exp ( - ( t  - p)2/4( 1 - g))dt. (2.15) 

In region (2  b ) ,  the other Hartmann-type boundary layer, for 

We can obtain some useful information from these very incomplete solutions. 
First, we can show that, iff@) is a function p near p = 1, then in region (1) the 
distribution of a, for a given value of 5, is similar for all values of M 9 1. We 
first calculate v in region (l) ,  using the fact that v is antisymmetric in 5:  

Thus we see that in region (1) v = O(M-*). Also, since ah/a{ = O(M-4) and 

(2.17) 
m M v  = O(M*), it follows that 
- = Mv, 
aP 

a result peculiar to shear layers like these, which was first noted by Moffatt 
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(1964). Thence, since CD = 0 whenj?+oo, 

a) = - - (MtV)dj?,  s: (2.18) 

and therefore, in our experiments, if we measure CD as a function p at a given 
value of 5, we should expect the results to be independent of M .  

The second result we can deduce from our approximate analysis is the re- 
sistance, R, of the fluid between the electrodes, as M +CQ. Since this result is not 
dependent on the electrodes being perfectly conducting we define R as 

R = Z3/I ,  (2.19) 

where 

is the mean value of the potential difference between the disks. From this defini- 

(2.20) 

Now it follows from our solution (2.15) and the boundary conditions placed on 

lim ( v + i ~ ) ~  = -, when p = 1. 
M-tm 1 

g ( P )  that 1 

Since ( v + h )  = O(v+h),  in regions ( 2 )  and (3), 

+1 

( v  + hlPzl d 5  = 1 ( v +  h),dc+ O(M-l), s-: -1 
(2.21) 

and therefore, since v is antisymmetric in 5, using (2.18), 

2a lim R = R, = ~ 

M-X.3 n(rb2 ‘ 
( 2 . 2 2 )  

This result does not depend on the function g(j?); it depends only on the fact that 
g ( p )  = 0 a t  p = 1. From (2.15) and (2.21), we might expect the next approxi- 
mation in M ,  as M+m,  to be 

( 2 . 2 3 )  

where k is some constant. Clearly, if the electrodes are highly conducting, 
A$ = A$, it follows then that K = - k ,  and that in regions (4), as M +co, 
- 

= - C( 1 - k / lMt) .  $11 - 
a/nvb2 2/ t2  

(2.24) 

The physical reason for the dependence of R on (lM*)-l is that since the thickness 
of the region (1)  is always O(M-4) the current density in the z direction, for a 
given value of I ,  is less by O(ZMi)-l than if there were no ‘bulging ’ of the current 
lines at  all (i.e. the limiting case). This implies that a$/& and consequently the 
resistance is also reduced by O(ZM*)-l. 



782 J .  C .  R. Hunt and D.  G. Malcolm 

3. The experimental apparatus 
Our experiments on electrically driven flows using mercury as the conducting 

fluid were performed in a rectangular duct which had originally been con- 
structed as a prototype for a much larger duct, described by Hunt (1967), and 
which was then modified for examining electrically driven flows (see figure 3). 
For the first set of experiments two Perspex blocks, 4 in. thick, were made with 
copper disks 2 in. in diameter ( = 2b) and 2 in. thick ( = t )  let into them, the surfaces 

Circular copper 

(a> 

Current and 
potential leads/\ 

Circular copper Copper wall 
Aectrode rPerspex 

1 Copper ;all electrode 
I 

( b )  

FIGURE 3. Apparatus for examining  electrically driven flows. (a )  Section of the first 
apparatus. ( b )  Section of the second apparatus. (c) Section BB through bot,h. 

of the copper disks being flush with those of the Perspex blocks (figure 3a). 
The blocks were placed either side of the duct with a gap of 1.47 in. ( = 2a) be- 
tween them, so that 1 = bla = 0.512. (The copper side walls of the duct were 
isolated from its interior by rubber sheets to avoid any short circuits.) Each disk 
had two wires connected to it, one to supply the current and the other to measure 
the electrical potential of the disk. A fifth wire was placed in one of the tubes 
leading out of the duct, its purpose being to measure the potential far away from 
the electrodes. 

We found that, with this first apparatus, the layers emanating from the disk 
edges were not sufficiently thick compared to the width of the probe. Also, since 
we were interested in examining the flow a t  a different value of 1, we performed a 
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second set of experiments in which one of the Perspex blocks and the insulation 
on one of the duct’s copper side walls were removed so that we were effectively 
examining only one half of the space between two disks. The distance from the 
disk to the copper face was 1.97in. ( = a ) ,  and thus 1 = b/a = 0.190, as shown in 
figure 3b. In  this case we attached two wires to the plate to measure potential 
and transmit the current. 

FIGURE 3(c). For legend see facing page. 

With the duct placed in the electro-magnet in the first apparatus the maximum 
value of the Hartmann number, M ,  based on a was about 600 and in the second 
about 1600. In order that the flows developed were similar to those described in 
the asymptotic theory of $2,  two conditions had to be satisfied by the apparatus. 
The first was that any error in alignment of the two disks had to be very much 
less than the thickness of the regions (1) ; i.e. the layers emanating from the disk 
edges, which are O(aM-*), = O(0.030in.). We can confidently say this condition 
was satisfied by the two disks; with the one disk of the second apparatus this 
condition did not apply. The second condition was that the thickness of region (1)  
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should be very much less than the radius of the electrodes, which required 

b $ a M t  or J X J B I .  that 

The maximum values of lM4 attainable in the two apparatuses were 13 and 7.7 
respectively, which shows that the first apparatus met the conditions of the 
theory better than the second. (We did not use larger electrodes for fear of the 
regions (1)  touching the top and bottom walls of the duct.) We also note that, if 
ce is the conductivity of the electrodes and t is their thickness, cralcret, the relative 
conductance of the fluid to the electrodes is 0.049 and 0.132 in the two cases. 

The object of the experiment was first to measure (by means of a Pye potenti- 
ometer) the potential difference between the electrodes when a steady current 
(measured by an ammeter) was passed between them, as the magnetic field 
(evaluated from a calibration curve using the measured current in the magnet 
coils) was varied. The second object was to examine the distribution of the electric 
potential between the electrodes, which was achieved by the insertion of an 

Pall 
plati 

wire insulation 

(b) 

FIGURE 4. Sections through the experimental probes. (a)  Electric potential 
probe. (5 )  Pitot tube. 
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electric potential probe, shown in figure 4a, into the fluid and by measuring the 
difference between the tip of the probe and one of the electrodes, as the probe 
was moved. The third aim was to examine the velocity in the shear layers existing 
between the rims of the electrodes by means of measuring the difference in 
pressure between that at  the tip of a Pitot tube, shown in figure 4b ,  and the pres- 
sure tapping at  the wall, shown in figure 3c .  

In  appendix A these two probes are described along with the mechanism for 
moving them across the duct. 

4. Experimental results 
4.1. Electric potential measurements 

In  the first part of the experiment we measured the mean potential difference 
between the disks, A3, and the difference in electrical potential, $, between the 
probe and the plane z = 0, both as a function of I and M .  (In the second apparatus 
we have calculated @ by doubling the potential between the electrode and the 
wall.) In  the first instance we wanted to see whether @ and q4 were proportional 
to 1 at a given value of M ,  at least for sufficiently small values of I ,  since all the 
theory of $ 2  was based on this assumption. The experimental results shown in 
figures 5 and 6 show this condition to be well satisfied. These figures also give us 
some understanding of how the magnetic field affects secondary flows, but this 
discussion is relegated to appendix B. An important practical point to note in 
figures 5 and 6 is that the values of ATand q5 in the linear regime were always below 
100 pV and often below 10 pV.  Since the potentiometer only measured to 1 pV 
and other errors, caused by fluctuations in the magnetic field, temperature effects, 
etc., were at  least of the order of 1 pV, it follows that the errors to be expected 
were as much as 10 yo in some places. 

Having found the values o f 1  below which it was necessary to operate to avoid 
the non-linear flow regime, we then measured the variation of R, = AT/I, with 
M ,  for the two apparatuses. We showed theoretically in $2 that, whatever the 
distribution of current density across the electrodes, 

lim R = 22, = 2a/ncrb2. 

We also demonstrated physically why we could expect R/Rw to be a linear 
function of (ZM+)-l when M 9 1. Therefore, in presenting our experimental 
results in figure 7 we plot R/Rw against (ZNC))-l for the two electrode configura- 
tions in which 1 = 0.512 and 0.190 respectively. The two main conclusions from 
these results are first that R/R, is indeed a linear function of M ,  secondly that, 
to within the experimental error, the points for the two values of 1 fall approxi- 
mately on the same straight line, and thirdly that to within 2 yo R/R, = 1-00 
when this line is extrapolated to the point where M = co. It is unfortunate that 
so few readings were taken for 1 = 0.190 because it is hard to tell whether these 
are falling on a separate curve or are truly scattered about the straight line 
drawn in figure 7. 

Having demonstrated that some of the external characteristics of the 

& + W  

50 Fluid Meoh. 33 



786 

-25 

J .  G. R. Hunt a,nd D. G. Malcolm 

X - 

I (amps) 

FIGURE 5 .  Experimental graph of' potential between the disks, AT, against current, I, at 
various values of AT. A, Af = 1370, I = 0.190; 0, M = 588, I = 0.512; X ,  M = 204. 
I = 0.512; 0 ,  A1 = 0, I = 0.51%. 
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behaviour were approximately as predicted theoretically, we then examined the 
internal flow structure. In  our theoretical discussion of S 2 we first postulated the 
existence of various separate regions and then made certain deductions about 
them, some of which we have been able to verify experimentally. I n  the central 
region between the electrodes, region (4), we concluded that when M 9 1 the 

0.65 I I I I I I 1 I I I 
0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 

1 /(lill&) 

FIGURE 7. Variation of resistance between the electrodes, RIR,, with (l/Z&l&). 
0,Z = 0.190; 0 ,  Z = 0.512. 

velocity is zero and that the current density and electric field are uniform, pro- 
vided the electrodes are perfectly conducting, a condition only approximately 
satisfied by our apparatus. I n  figure 8 we have plotted ( - q5) crn-b2/uI against" g 
along the centre line (r = 0) when M = 0 and M % 1, since ( - #) rmb2/Iu = 

where is the value of q5 on the disk when 1cI = 00 at the same value of I .  This 
figure shows that, when M = 0, the current density j, is lower a t  < = 0 than at  
< = 1 because of the spreading of the current lines, but that, when M 9 1, the 
current density is the same a t  all values of 5, which was predicted by our theory 
of 3 2. Also we conclude that the spreading of the current streamlines is eliminated 
as shown in figure 1 b.  The slopes of the  two straight lines for two different 
values of (ZM*)-l are different, as we should expect from the graph of R/RK 
against (lM*)-l. We should also expect, as indeed we find, that the values of 
( - q5) an-b2/Ia are approximately equal to RIR, for these two values of (ZM;)-l. 
We should note that the potential measurements in this region were only likely 
to be in error to order (d /a) ,  i.e. less than 4%, owing to MHD effects (see 
appendix A, equation (A l)), but the random errors were about 5 %. 

Wenow consider theresults of the radial traverses of the electric potential probes 
in the region (1).  Figure 9 shows the results of a potential traverse when M = 0, 

50-2 
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FIGURE 8. Variation of potential, (-$unb2/Ia),  along the centre line of the elec- 
trodes when AT = 0 and when M S 1. 0 ,  M = 595, I = 512; 0, M = 0, I = 0.512; x ,  
M = 1550, I = 0.190, Q > 0; @, M = 1550, I = 0.190, 4 < 0. 

(- # )  o n  hYIa 

-1.0 -0.8 -0.6 -0.4 -02 O 0.2 0 4  06 

(T - b ) / b  

FIGURE 9. Graphs of potential ( -  $unbZ/Ia), against radius, (r - b)/b, when iM = 0. 
0,  6 = +0-97, I = 0.512; 0, 6 = +0.99, I = 0.190; X I  5 = +0-50, I = 0.512. 
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which acts as a reference with which to compare the results for M 9 1 .  We made 
three sets of measurements of $ in the first apparatus, i.e. the two disks, when 
p = 0.294 and M = 175,330 and 610. (The notation we use is the same as that of 
figure 2 ,  I being positive when parallel to the magnetic field.) In  figure 10 a we have 
plotted the results in the form of one graph of ( - $) rnbZ/I against ( r  - b)/(aM-*) 
( = p ) ,  in order to show firstly that the thickness of the region (1) is unquestionably 
of order (aH-8), and secondly to show that the distribution of # and therefore v, 
is similar for different values of M in these layers. We have drawn the best line 
through the experimental points, because they show only a small systematic 
departure from this line. Considering the randomness of many of the errors 
involved, the curves do not indicate any large-scale departure from similarity 
except where ( r  - b)/(aM-*) < - 3, when the values of ( - #) are lower for the 
lower values of M .  This result is to be expected since in the central region, ( 4 ) ,  
( - $) unb2/aI varies linearly with M-*, ( - $) increasing as M increases. 

The results shown in figure 10 b were taken in the second apparatus and were 
plotted in the same way as those in figure 10a. In  this case the results were taken 
with the probe just touching the wall or very close to it, 6 > 0.96, and, as the 
figure shows, there is no detectable difference caused by moving the probe very 
slightly near the wall. As well as indicating the similarity of the # profiles (in the 
sense of $ 2 ) ,  these results also show that near the edge of the disk ( - $) decreases 
and the distance in which this drop occurs is O(aM-4). Therefore the electrodes 
cannot be considered as resembling perfectly conducting electrodes, because, if 
they were, the probe would have recorded a constant potential across the elec- 
trode, at  least to within a probe error of O(d/a) .  

It is interesting that the thickness of the layers are approximately the same 
in all cases, being about 6aM-*, so that the ratio of the thickness of the layers 
to  the radius of the electrodes is S/b = 6(ZM*)-l. For the maximum value of 
M in the first apparatus S/b  = 0.46 and in the second apparatus S/b = 0.78. 
Therefore the approximation we made in $ 2  that a/+ 9 l / p  is not really justi- 
fiable in analysing our experimental situation, and consequently we ought not to 
expect the degree of agreement that we find for the values of R/R, against 
(lM*)-l in the two apparatuses; nor should we expect the $ profiles to be the same, 
even if they had been measured at exactly the same value of 6. 

4.2. Pitot tube measurements 

As with the electric potential probes, when we began to use the Pitot probe 
we first checked that we were measuring a velocity low enough to be in the 
required linear flow regime. With the Pitot tube we also had to ensure that the 
measured velocity was high enough for ( p ,  -ps )  to be proportional to the square 
of the velocity v,, where p ,  and p ,  are the total and static pressure, respectively. 
Since in the flow regime examined in 3 2  v ,  is proportional to I and since it follows 
from (A 7 )  that p ,  is proportional to vt ,  if the MHD error is small, we had to find 
the values of I for which Ap = p ,  -pw was proportional to 12, where pu, is the 
pressure at the tapping on the wall. 

In  figure 11 a we plot Ap against I z  when r = 0, M = 1370, and when r = 1.33b, 
M = 855, these and all subsequent readings being taken in the second apparatus, 
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FIGURE 10. Variation of potential with radius in region ( 1 )  when M & 1 .  (a) ( -  Qcr02//Iu) 
againstp = ( ~ - b ) / ( a j J - & ) ; L  = 0.502, 5 = 0.706.0, ,$.I = 175; X ,  M = 330; A ,  ilil = 810. 
( b )  ( -#mnbz/Ia) against p ;  1 = 0-190. A, M = 1367, 5 = 0.97; x ,  M = 882, < = 0.99; 
0 ,  Jf = 1367, < = 0.99; Q, M = 1367, < = 0.96; 0, M = 1550, 6 = 0.50; D, -11 = 1575. 
< = 0.50. 
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where 1 = 0.190. Note that, when r = 0, Ap < 0 since vg = 0 and the static 
pressure is below the outside the disks due to the radial pressure gradient. When 
r = 1.336, Ap > 0, showing that in region ( 1 )  the rise in total pressure is greater 
than the fall in static pressure, which is, of course, to be expected. 

Realizing that the most critical region for examining the onset of secondary 
flow was region (l) ,  we then measured Ap a t  two values of M when r = 1.267b. 
The results, plotted in figure 11 b,  show, first, that the velocity decreases as M 
increases for given I, as is to be expected from the theory of $2, and, secondly, 
that to operate in the required regime we needed to measure pressures of the 
order of - 0.025 in. water, which are about as low as can be measured with any 
degree of repeatability. This meant that we had to operate a t  high values of M ,  
with the associated disadvantage of using the Pitot tube when the thickness of 
region (1) was least. We have to presume that, though the MHD probe error for 
these values of I was about 50 yo of the measured value, the random errors pre- 
clude any conclusion as to the exact linearity of the Ap us. I 2  relation. 

We measured the radial distribution of Ap a t  5 = 0.991 and g = 0.972 at only 
one value of M ,  1370, since we could not lower M enough to obtain appreciably 
different yet repeatable readings arid at  only one value of I ,  0.7 amps. From the 
radial distribution of Ap we calculated vg using the relations (A 9). Since Ap is 
positive in region (I)  and negative in (4) it  is zero on the boundary between these 
two regions and consequently it is impossible to calculate the velocity there at a11 
accurately. We have plotted v,uZ~M*(CT~)*/I against ( r  - b)/(uM-&) in figure 12 
so that if a suitable theory can be developed it may be compared with these 
results. We note that the velocity is greatest nearest the wall, which is predictable 
since the jump in potential across the layer is greatest when q5 is greatest, i.e. 
near the disk. Also note that, as r decreases, ug decreuses more sharply near the wall, 
which is to be expected since, if the wall is highly conducting, the current must 
leave the electrode at right angles, thus reducing the shear stress and conse- 
quently the velocity a t  the wall. We may note that the Hartmann boundary 
layer here was so thin, 0.001 in., as to be negligible. 

4.3. Discussion 

Having calculated the velocity from the Pitot tube readings, me can now com- 
pare these values found with those calculated from the electric potential 
distribution, using the relation, 

Rewriting this in a non-dimensional form we have 

(2.17) 

In  figure 13 we have plotted wu2a($/I)/ar and vg Ma(ay)*/I against ( r  - b)/(uM-fr), 
using the uncorrected readings of the electric potential and Pitot probe. (With 
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0.10 r 

0.08 - 

-0.20 - 
( a )  

I2 (amps2) 

( b )  

FIGURE 11.  Variation of Pitot pressure, Ap, with I2 when M S 1 and 5 N - 1. (a)  Large 
values of I .  0, M = 1370, r/b = 0; 0,  M = 855, r /b  = 1.33. ( b )  Sma,ll values of I. 
0, ill = 855, rlb = 1.27;  0 ,  A1 = 1370, r / b  = 1.27.  
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the latter we have corrected for the static pressure gradient.) We see that a 
discrepancy of > 100% exists between the two curves. We then calculated 
v O M u ( q ) g / l  using the correction formula (A 9) (as we did for figure 12), and 
thence calculated the mean value of Ed2a2/ar2 [ M u v O ( a y ) ~ / l ]  across tjhe probe 

/--. 
0.15 r / 

I I I I I I I I 1 
- 0 5  0 0.5 1 .o 1.5 2.0 2.5 3.0 3.5 

P 

FIGURE 12. Variation of velocity, v o a l z M ~ ( a ~ ) ~ / I ,  with radius, p = (r-b)/(aM-*), in 
region (1) ( M  = 1365, 1 = 0.7 amps). -, 6 = 0.97; - -- -, 5 = 0.99. 

- 

face in order to use the correction formula (A 2) for Is,. (We took Ic = t ,  being 
the value for the two-dimensional probe examined by Hunt (1967, chapter a).) 
We note that, though d2M/u2 N 0.1, since a2ve/ap2 was so great, the size of the 
correction term was sufficient to reduce the difference in the maxima to about 
30 yo. We also note that the maximum of the uncorrected curve of the potential 
gradient is at a lower value of r than the velocity maximum and that, with the 
correction applied, the maximum moves to a higher value of r .  We note from 
figure 13 that this displacement is approximately equal to the diameter of the 
probe. 

The main reason for the difference in these two corrected curves is probably 
that the experimental situation did not sufficiently satisfy the condition that 
a/& 9 l / r  and that therefore the radial currents were sufficiently large to make 
(2.17) a poor approximation. 
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FIGURE 13. Comparison of the values of the velocity cnlculatecl from Pitot and electric 
potential probe readings, both corrected and uncorrected for NHD error (c = 0.991, 
M = 1367). 

5. Conclusions 
From our analysis in 6 2 of the flows induced between two highly conducting 

circular electrodes we concluded that the following qualitative phenomena are 
to be expected when M 9 1. (i) The ‘channelling’ of current between the two 
electrodes. (ii) The existence of a thin layer joining the edges of the circular 
electrodes in which a large radial electric field and an azimuthal velocity are 
induced. In  this layer the electric field increases and the velocity decreases as 41 
increases. (iii) The variation of the potential distribution across the electrode 
as M varies, on account of the finite conductivity of the electrode. 

Our main quantitative predictions are that: (if If R is the resistance between the 
t,wo electrodes, 2a 

lim R = R  - -__ 
- arb2 ’ $2- m 

( 2 . 2 2 )  

whatever the current distribution on the electrodes. From physical reasoning we 
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R/Rm = 1 - k/lM*, 

795 

expect the variation of R with M to be given by 

(2.23) 

where k is a constant. (ii) If the relative conductance of the fluid to the electrodes 
is low enough, i.e. if m/cr,t < 1, then, provided (b-r)/(aM-)) > 1, a&& = 0 
and a$/az is constant. (iii) On physica'l grounds we expect the current density 
distribution to be a function of p = ( r  - b)/(aM-&) on the electrodes. We are then 
able to conclude mathematically that, if this is so, $ is also a function of p at a 
given value of z. 

It follows that, if the quantitative phenomena (i) to (iii) are shown to exist 
experimentally, then the qualitative phenomena (i) to (iii) also exist. 

In  our experiments, described in $4, we first showed that the relation between 
R/Rm and M took the form of (2.23), whence the result (2.22) follows. We demon- 
strated that a$/ar = 0 and a$/& is a constant in the region (4), thus confirming 
the second quantitative prediction, and the first qualitative one. We showed that 
a thin layer existed between the electrodes' edges and that, in this layer, g!mrb2/Ia 
was a function of p ,  as predicted. In  this layer the variation of the velocity with 
M agreed qualitatively with our predictions, though the agreement between the 
velocity and potential results was not satisfactory. Thus the main conclusions 
from our physical and mathematical analysis were confirmed experimentally. 

The last important result from our experiments comes from the comparison 
of the results of the Pitot tube and the electric potential probe in an MHD flow 
and the application of some of the new theory of MHD probes, outlined in 
appendix A, to explain the differences in their results. (This is the first experi- 
ment in which such an exercise has been attempted.) The calculations of velocity 
in the region ( 1 )  deduced from Pitot probe measurements were between 100 yo 
and 400 % higher than those made from electric probe measurements, when no 
corrections were applied for MHD probe errors. After applying such corrections 
we found that the differences between the two sets of measurements were re- 
duced to between 30 yo and 150 %; also the value of r at the maximum of the elec- 
tric potential readings became closer to that of the Pitot readings. Thus we con- 
clude that, though our error corrections are of some value, the large discrepancy 
remaining between the results demonstrates how little we understand the probes. 
(Some of the discrepancy may be due to the flows not satisfying the conditions 
of the asymptotic theory, by which we compared the results of the probes.) 
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where some of the manuscript of this paper was written. D.G.M. gratefully 
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hibition of 1851 and in part by the National Research Council of Canada, in the 
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Appendix A 
1. Electric potential probes 

We mention here a few of the considerations which led to the design of the electric 
potential probe used in our experiments. On the one hand such a probe needs 
to be a's small as possible, when used in flows such as these where the gradients of 
velocity and electric potential are large, to avoid the MHD errors discussed by 
Hunt (1967); the probe size must also be minimized to reduce the size of the vor- 
tices shed by the probe which, being carried round, would tend to affect the 
potential at the probe tip. On the other hand the probe must be sufficiently rigid 
for its position to be determinate, particularly since in this experiment the probe 
was not always facing into the flow; also, the conducting region inside the probe 
must have a sufficient diameter for its resistance to be reasonably low and this 
wire has to be insulated from the probe's exterior, if this is made of metal. 

The fact that the strongest small-diameter tubing easily available is made of 
stainless steel determined our choice of the material for the probe's exterior. 
We could either choose to have mercury or a wire inside the probe as our con- 
ducting region. The advantage of the wire is that it can be made to protrude from 
the end of the probe and thus present a small area to the flow. We chose to use 
palladium and platinum wires, the thermoelectric potential of these wires being 
close to that of mercury. The final design is shown in figure 4a. Note the two dia- 
meters of stainless-steel tubing used, the use of flexible plastic tubing as the 
insulator between the steel tubing and the wire, and the coating of the exterior 
of the probe with a thin layer of non-conducting Perspex cement. 

We now consider the various regions of the flow between the disks, as discussed 
in $2, in order to estimate the kind of errors to be expected when M $- 1. 

Region (4) .  In  this region the current density is uniform and the velocity is zero 
so that, if the probe is at right angles to the current, i.e. y = 0, from the symmetry 
result of Hunt (1967, chapter 4) no error would be induced. However, as we have 
explained, the probe could not always be at right angles to the plane 6' = &r, 
so that we could expect some error due to blocking the currents. Then the error 
in q5 compared to A$ is easily seen to be O(d/n) ,  where CE is the probe diameter. 

Region (1). In this region severe velocity and potential gradients exist and the 
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equation, 
- (2.17) 

gives the approximate relation between q5 and v,. Now, if the measured potential 
is q59n and the tme potential q5, since a$/ae = 0, 

where L is a large distance, relative to the probe diameter, in the azimuthal 
direction. (For further discussion of this and other aspects of electric potential 
probes see Hunt (1967).) Since N = o-Bid/pv, < 1, we can ignore the effect of the 
magnetic field on the flow over the probe to the first order and then (A 1) becomes 

+,,, = $ + kd23,a~, /ar ,  (A 2 )  
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where k is some positive, dimensionless constant which may be assumed to be 
independent of v, since €2, = pdv,/q > 1. 

Using (2.17), (A 2) becomes 

q5m = q5 + wa2q51ar2, (A 3) 

whence we deduce two results by considering a simple expression to represent the 
fall of q5 through the regions ( l ) ,  say q5 = 1 - erf ( p ) ,  where ij = (r - b)/(aM-i). 
We see that if k is large enough aq5,lar has two maxima for p :  0, but that, if k 
is low enough, the maximum value of aq5,lap is less than that of a$/@. To find 
the condition for the error term to be negligible in region (l), we write (A 3) in 

kd2 
terms of p :  

(A 4) q5, = q5 + -2 M azq5pp. 

In our experiments d2M/a2 = 0.105 and therefore we could expect one maximum 
for aq5,jar and with a value less than aq5jar. 

In order to calculate q5 from q5, we could either integrate (A 4) or, as in fact we 
did, we could use the results of the Pitot tube readings for vg to find q5 from (A 2). 
To calcidate the error term we averaged the values of a2#/ar2 or av,/ar across the 
face of the probe, 0.025 in. in diameter. 

2 .  Pitot tubes 

The considerations leading to the design of the Pitot tube were very similar to 
those leading to the design of the electric potential probe, the only difference 
being that the probe should not have too small an internal diameter because of 
the need to reduce the time for taking a reading of pressure. Again we used various 
sizes of stainless-steel non-magnetic tubing for the probe, each tube fitting inside 
the other. The tube was coated with Perspex cement in order to minimize the 
effects of the probe on the electric fields; however, this was not really necessary 
as the contact resistance of stainless steel is so large as to render i t  effectively 
non-conducting. The final design of Pitot tube is shown in figure 4 b. 

From the theory of Hunt (1967, chapter 4) and the experimental results of 
East, (1964) we expected that the MHD probe errors could be calculated from the 
formula 

where po, ps  and p are the total pressure, the static pressure and density re- 
spectively. It turned out that N = uBid/pv, was about unity so that higher-order 
terms in the expansion should have been used. However, the experimental results 
of East (1964) gave a = 0.39 and the experimental results of Hunt (1967) gave 
a N 0-4 for values of N of 0(1) ,  so we assumed a = 0-4 in our calculations of 
velocity. 

The other source of error to be expected was caused by measuring velocity in a 
shear flow, i.e. region (l), the length scale of which was somewhat smaller than 
the diameter of the Pitot tube. However, it was shown experimentally by Hunt 
(1967) that, if a Pitot tube is used to measure the velocity of a plane Poiseuille 
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flow in a duct the width of which is only four times that of the tube, the errors 
over the central half are negligible, but appreciable errors ( - 50 %) occur when 
the centre line of the probe is within one diameter of the wall. However: even that 
shear flow was less steep than those measured here, so we could expect an appreci- 
able and largely uncertain error in velocity in this highly asymmetric shear 
flow. 

We decided to measure the velocity induced in the region (1) by means of a 
Pitot tube only, the pressure in the Pitot tube being measured relative to the 
pressure a t  a tapping in the wall of the duct, puJ. The static pressure was not 
measured in the layer, even though there was a small static pressure gradient 
through the layer caused by the rotating flow. However, this pressure gradient 
may be calculated from the equation 

ap@ = pvglr. (A 6) 

Leaving the error in po for the moment, we have the usual relation between 
p o  and ps ,  the total and static pressures, i.e. 

Po = 23.5 + *Pvg. (A 7 )  

Eliminating ps from (A 6) and (A 7) we have 

whence 

Thus, by only measuring Po, we could calculate vg. Since the static pressure effect 
is O(S/b) ( G l ) ,  we could approximately allow for the MHD error, which was 
greater than the static pressure effect, by using successive approximations to  
calculat>e vR, viz. 

(We needed to use two iterations a t  the most in our calculations.) 

3. The probe mechanism 

To examine the flow between two circular electrodes placed in non-conducting 
planes opposite each other with a magnetic field parallel to the line joining their 
centres, we only needed to examine the flow in one plane, 101 = constant, be- 
cause, for low enough velocities, the flow is axisymmetric. Since we wanted to use 
the mechanism and the probes designed for examining duct flows with the 
minimum number of alteratiom, we chose to examine the flows in the plane 
0 = ;-TI. As a result of this decision we mounted the mechanism on the duct as 
shown in figure 3c. (This mechanism is similar to that of Lecocq (1964).) 

The method of moving the probe in the plane, 8 = k +7r, may be understood 
by referring to figure 3a,  where the locus of the probe stem is shown in the ( r ,  2)- 
plane (0 = 0). To move the probe tip to a given value of z in the 8 = 2 &7r plane, 
the probe had to be twisted on its own axis and the probe spindle, 8, also twisted. 
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To move the probe vertically, i.e. to vary r in the 0 = Qi. plane, a micrometer 
screw was used. As a consequence of this method of moving the probes, being 
gin. from their tip to the centre line of their stem, the probes were only able to 
face into the flow at two positions : (1) z 2: +a, 6 N 1 and (2) in the first apparatus 
at z 21 -a ,  6 N - 1, and in the second at  z = 0.25a, 6 = 0.2.5. Therefore, without 
making new probes of differing lengths, the Pitot tubes could only be used near 
these values of x ,  such a probe being accurate to 1 yo if it  faces into the flow to 
within 10". However, the electric probes could be used at all values of z ,  since 
they do not critically depend on pointing into the flow, or being at  right angles 
to the current path. But, if y is the angle between the line joining the probe's 
tip to the axis of its stem and the duct's axis (see figure 3a, b) ,  it may be shown 
from the analysis of Hunt (1967, chapter 4) that the probe errors are reduced if y 
is kept to a minimum. When the probe tip was on the duct's centre line, y took 
its maximum value, about 45'. 

Appendix B. Secondary flow 
1. Orders of inagnitude 

As the velocity increases, the form of the flow generated between the electrodes 
must change in either or both of two basic ways. One possible change is caused by 
the fact that the azimuthal velocity, ve, varies in the radial direction such that 
avojar $ avo/&, so that the flow is expected to be unstable somewhat in the 
manner of a plane jet. Thus, when v,(aM-B)p/q = R,, where R, is the critical 
value of the Reynolds number of that plane jet which corresponds to the varia- 
tion of vo with r at the highest values of Vg, we might expect the flow to become 
unstable to small disturbances, which eventually develop into non-axisymmetric 
eddies with the major component of the vorticity vector lying in the z direction, 
i.e. an unsteady flow similar to that found by Lehnert (1956). Since ve cc I / M $  
from the theory in 3 2 ,  it follows that 

I ,  cc R,M, (B 1)  

where I ,  is the critical value of I .  Thus, for a stable flow at a given value of M ,  I 
must be lowered so that I < I,. If the flow becomes unstable in this way, v, + 0 
and/or v, $. 0,  and in that case the inertial terms would have to be considered in 
the momentum equation. As a result v0, and consequently AT, would no longer be 
proportional to I .  

The second change in the basic flow could be the onset of steady, or unsteady, 
secondary flow caused by the variation of the azimuthal velocity in the z 
direction so that ap/& ( =  pvi lr) varies significantly with z. Thence v, =+ 0, 
vz + 0, and v, is changed because the inertial terms in the momentum equation 
are no longer zero, e.g. vz avo/ax $: 0. It is again clear that when this occurs v, and 
A Y  are no longer proportional to I .  

Thus we conclude that when the basic flow changes, or becomes unstable, we 
should be able to detect this change by noting the departure from linearity in the 
variation of @ with I .  Whether a change should become evident at  a particular 
value of I ,  as in the first instability, or becomes gradually more apparent as in the 
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gradual onset of a steady secondary flow, cannot be established without a more 
detailed investigation. Such an investigation of these interesting instability and 
secondary flow problems has recently been undertaken in which a quartz- 
insulated hot-film sensor is being used as a flow measurement device in liquid 
mercury. The results of this investigation will be reported in detail in a forth- 
coming paper by Malcolm (1968b), but one result will be mentioned briefly in 
$ B 2 as it relates to equation (B 1). 

2. Secondary $ow measurements 

Figure 5 shows the r$ - I curves for the two apparatuses at  various values of M .  
We note that @ cc I when M = 0, and that, when M + 0, the curve of ATagainst 
I is a straight line for I sufficiently small, but as I increases the curve ceases to be 
a straight line.? From the two curves taken at  M = 588 and M = 204 in the two- 
disk apparatus (1 = 0.512), we note that the value of I a t  which the linear regime 
ceases is higher when M is higher, thus showing that an increased magnetic field 
tends to suppress the onset of the flow in the non-linear regime. A simple examina- 
tion of the equations would indicate this result for either of the two non-linear 
flows discussed in $B 1. 

We continued this investigation of the onset of secondary flow by examining 
the relation between the current, I ,  and the difference in potential, $, between 
that on the line x =; 0 and that measured by the electric potential probe in the 
one-disk apparatus ( I  = 0.190). The probe was placed a t  a radius of 1.27b and at  
a value of = - 0.95, i.e. in the region (l), so that any secondary flow effects 
could be markedly demonstrated. As shown in figure 6, the q5 against I curve 
becomes non-linear at  a much lower value of I for the same value of M than in 
the r$ against I curve shown in figure 5. The most plausible explanation is that 
a secondary flow occurs in whichthe radialvelocity tends to thicken the region (l), 
leading to a reduction at a given value of I of the current density in region (4) and 
thence A q ,  as we see in figure 5. However, as region (1) thickens, the potential 
gradients fall and therefore, if the probe’s position is at a radius greater than that 
of the disk, rises, and, if at a lesser radius, I$/  falls. This explains why, when 
the curves in figure 6 become non-linear, 141 rises. 

Experimental studies of the stability of the primary flow which are presently 
under way using the hot-film anemometrg technique (Malcolm 1968 a) indicate 
that, in the two-disk apparatus ( I  = 0.512), the critical current at which the 
primary flow first becomes unstable varies in the manner, I ,  cc M ,  for M > 200. 
The most interesting consequence of this result, is that the critical Reynolds 
number, R,, defined in (B 1) must be a constant and independent of M ,  for M 
sufficiently high. This implies that the magnetic field tends to stabilize the flow 
chiefly by affecting the primary flow, i.e. lowering its Reynolds number for given 
I .  The other consequence is that, since v, cc I/M*, the critical velocity, occurring 
when I = I,, increases as M*, which agrees qualitatively with the results of 
figure 11 b. 

t These readings for M > 0 were taken to examine the secondary flow, not to measure 
accurately @ / I  in the primary flow regime. The latter readings were taken later and 
are not shown. 
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